GTS NX功能介紹

- Why MIDAS Geotech works for engineers
- What to do with GTS NX
- How to enhance the design process
- Case Study
- Fully integrated approach

Why do the engineers suffer?

GTS NX will make your time efficient

Reasons for 3D

People in MIDAS Geotech

- Experts in 3D/2D geotechnical engineering
- Various experience with technical support and training

What to do w/ GTS NX

Perform all kinds of analyses with GTS NX in One platform

- Linear static analysis
- Nonlinear static analysis

Static Analysis

- Stress (drained/undrained) analysis
- Seepage analysis for each stage
- Stress-seepage-slope coupled
- Consolidation analysis for each stage
- Fully coupled stress & seepage

Construction Stage Analysis

- Consolidation analysis
- Stress—seepage fully coupled analysis

Consolidation Analysis

Stress-Seepage Fully Coupled

Seepage Analysis

- Steady state seepage analysis
- Transient seepage analysis

Dynamic Analysis

- Eigenvalue / Response Spectrum analysis
- Linear Time History (mode/direct methods)
- Nonlinear Time History analysis
- 1D/2D Equivalency Linear analysis
- Nonlinear time history + SRM Coupled

Slope Stability
Analysis

- Strength Reduction Method (SRM)
- Strength Analysis Method (SAM)
- Construction stages Slope stability (SRM/SAM)

Simple work-flow

Simple work-flow

Graphical User Interface

Multi windows

Compare various sections or different approaches in one program window

Various constitutive soil model

Choose the appropriate soil model for your various projects

General Mohr-Coulomb

Hardening Soil (small strain stiffness)

Sand Modified UBCSAND

PM4Sand

Clay Soft soil (Creep)

Modified Cam Clay

Sekiguchi-Ohta(Inviscid) Sekiguchi-Ohta(Viscid)

Generalized SCLAY1S

Rock (Generalized) Hoek Brown

Jointed Rock Mass

CWFS

Various element library

Save time by just selecting the necessary elements from the prepared library

1D Element Geogrid

Truss Beam

2D Element Shell

Gauging shell

Plane stress

Plane strain

Geogrid

Axisymmetric

3D Element Solid

Others Interface

Elastic / Rigid link

Pile interface / Pile tip

User specified behavior

More convenient Partial Factor design function

2D analysis can use the **partial factor** function which was development based on Euro Code 7.

GTS NX is providing the database for this partial factor as below, Design Approach 1 Combination 1

Design Approach 1 Combination 2

Design Approach 2

Design Approach 3

Directly checking the original and factored parameters

Perfect compatibility with CAD formats

File format	Description
*.dwg	AutoCAD drawing files
*.dxf	AutoCAD drawing interchange files
*.x_t; *.xmt_txt; *.x_b; *.xmt_bin	Parasolid (9 to 29) files
*.sat; *.sab; *.asat; *.asab	ACIS (R1 to 2018 1.0) files
*.stp; *.step	STEP (AP203, AP214) files
*.igs; *.iges	IGES (Up to 5.3) files

Intuitive & Powerful geometry functions – extrude, sweep, boolean and etc.

• TGM & Bedding plane wizard

Easily create the surface of the site by simple topography import

TGM & Bedding plane wizard

Easily create the surface of the site by simple topography import

 TGM & Bedding plane wizard Powerful meshing algorithm with Hybrid technology **Tetra** Hexa Hexahedral Tetra + Hexa(hybrid) **Tetrahedral**

Boundary conditions & Loads

Boundary

Constraint

Change Properties

Review

Water level

Nodal Head

Surface Flux

Slip Circle/Polygonal Surface

Draining Condition

Non Consolidation

Transmitting

Loads

Self Weight

Force

Moment

Displacement

Pressure(Surcharge / Water)

Line Beam Load

Element Beam Load

Temperature

Pre-stress

Contraction

Initial Equilibrium Force

Combined Load

Response Spectrum

Ground Acceleration

Time Varying Static

Dynamic Nodal / Surface

Load to Mass

Train Dynamic Load Table

Water condition control – nodal head, line & surface flux, water level

如何得到受力方向大小?

• Easy check result – 1D/2D Equivalent Elements

Easy check result - various types of results

RY INTERNAL MOME...
♠ RZ INTERNAL MOME...

内力 Grid Force

Easy check result - Probe

DISPLACEMENT

11.4%

6.2%

5.6%

0.6%

+3.93775e-002

2.89495e-001

-6.18367e-001

-9,47239e-001 -1,27611e+000 -1,60498e+000

1.93386e+000

-2.26273e+000 -2.59160e+000 -2.92047e+000

-3.24934e+000

-3.57822e+000

-3.90709e+000

Easy check result – clipping & probe

Analysis results review by 3D PDF Report with out software license

Technical support system

Help manuals / Tutorials with various topics

Taiwan MIDAS Solid-Simulation website

MIDAS SOLID SIMULATION MESHFREE NFX FEA_NX CFD GTS_NX 整合性課程 分析案例 課程報名 實際下載 FAQ 量會冒資料 【◆登出

Technical support system

Various training video contents

Training Program (Online Course / Case study)

MIDAS Case Study

3D島式開挖

2D分析

2D 建模只考慮模型的一個平面,縱向支撐、水平支撐和傾斜梁無法建模。

開挖面最大垂直位移 (m)

開挖面最大水平位移 (m)

MIDAS/TGM

Hybird Mesher

(六面體+五面體+四面體)

GTS NX 混合網格/全共點建模

Shell Element(傳力裝置)

GTS NX 混合網格/全共點建模

直井段

直井背填區

施工階段模組

Anchors地錨(預力施加)

管幕區變更材質

豎井背填灌漿和襯砌

GTS NX 邊坡穩定分析

- 2D分析 方法 1
 Limit Equilibrium Method(LEM)-極限平衡法 2D
- 2D分析 方法 2
 Stress Analysis Method (SAM)-應力分析法 2D
- 2D分析 方法 3
 Strength Reduction Method (SRM)-強度折減法 2D
- 3D分析
 Strength Reduction Method (SRM)-強度折減法 3D

GTS NX 2D邊坡穩定分析

開挖後邊坡穩定性計算

Weathered Soil Weathered Rock Soft Rock

2D分析-方式1.LEM

2D分析-方式2.SAM

2D分析-方式3.SRM

GTS NX 2D邊坡穩定分析

2D分析-方式3 SRM計算之安全係數1.50625 Results Item Post Style Post Style Post Style Post Style Post Style Plane Stability(SRM) Plane Strain Forces Plane Strain Stresses Plane Strain Stresses

GTS NX 3D邊坡穩定分析

Strength Reduction Method (SRM)

ngth Reddetion Wethod (5)

300m ×300m

3D地形實體特徵

GTS NX-降水井模擬

GTS NX-滲流應力耦合分析

Stage1.滲流分析

GTS NX-滲流應力耦合分析

Results 穩態滲流 INCR=1:滲流結果 應力 INCR=21:應力結果

MIDAS 整合性介紹

MIDAS 整合性

Solid Total Solution

風機安裝施工階段分析

土壤液化分析

齒輪組分析

風機流固耦合分析

風機地形風場分析

CIM+GTS 3D 模型整合

CIM-3D模型隨路線線形自動變更

Bridge & Tunnel Wizard

Smart Template

PSC Beam Bridge

CIM+GTS 3D 模型整合

Tunnel

Bridge

CIM>S NX 實體特徵直接轉換

GTS NX & Gen 結構互制分析

GTS NX & Gen 結構互制分析

GTS NX+CIVIL無縫轉換

匯出MXT Files(*.mxt)檔案格式

元素&特徵無縫轉換

Thank you.

GTS NX 2D Excavation with Retaining System

Lesson 01

Midas Taiwan

Tutorial video with

English – Chinese subtitle

GTX NX 2D Excavation with Retaining System

Reference: Midas GTX NX Tutorials

Interface Wizard

► Interface Wizard equation from Midas GTX NX manual:

$$K_n = E_{oed,i} / t_v$$

Here,
 $K_t = G_i / t_v$
 $E_{oed,i} = 2 \times G_i \times (1-v_i) / (1-2 \times v_i)$
 $G_i = R^2 \times G_{soil}$
 $C_i = R \times C_{soil}$
 $G_{soil} = E / (2(1+v_{soil}))$

Where,

K_n: Normal Stiffness Modulus

K_t: Shear Stiffness Modulus

t_v: Virtual Thickness Factor

R: Strength Reduction Factor

C_i: Interface Cohesion

Kn (Normal stiffness modulus) is the elasticity modulus for **bonding and un-bonding behavior** in the normal direction to the interface element

Kt (Shear stiffness modulus) is the elasticity modulus for **slip behavior** in the normal direction to the interface element

► Strength Reduction factor (R)

- Sandy soil/ Steel material: R= 0.6 ~ 0.7
- Clay/ Steel material: R= 0.5
- Sandy soil/ Concrete: R= 1.0 ~ 0.8
- Clay/ Concrete: R= 1.0 ~ 0.7

The general **Virtual Thickness Factor range is 0.01 ~ 0.1** (If the stiffness is high, use a smaller value)

2D Element (Beam element/ Truss element)

▶ Beam and Truss element comparison:

E.g., Truss element input by library section

Note: Input the spacing for considering the strength differences between 2D and 3D

2D model import

Intersect function

Creating geometry area

Make face function

Selecting the outside line for 'Target object'

Imprint function

the next mesh set step

Soil material

General step for defining a specific soil material

Soil property Create/Modify 2D Property Plane Strain Add/Modify Property Create Sub-Type Nο Name Type ID Name SOIL1 Color 2D Shell 1 Modify... Plane Strain 2 SOIL1 2D 3 SOIL2 2D Plane Strain Copy Material 1: SOIL1 ~ [E 2D SOIL3 Plane Strain Material CSys Delete 5 O CSys Global Rectangular V D-Wall Beam Import... S1(UB 610x229x. Angle 0 [dea] Truss 8 S2(UB 610x229x... Truss Renumber Interface Proper... Interface Plain strain property Create/Modify 1D Property 10 Interface Interface Proper... 11 Interface Proper... Other Interface Beam OK Cancel Apply 12 Interface Interface Proper... 13 Rigid Link Other Rigid Link Name D-Wall Color Truss Material 5: CONCRETE S1(UB 610x229x101 @ 4 Color Hinge Property Section-i Section-i ☐ Taper Constitutive Behavior Cross Sectional Area(A) From Material 0.140596345 0.140596345 m4 Torsional Constant(Ix) Material 6: STEEL 0.682395003 0.682395003 m Torsional Stress Coeff. Hinge Property 0.0833333333 m4 Area Moment of Inertia(Iy) 0.0129 m² Cross Sectional Area(A) Area Moment of Inertia(Iz) 0.0833333333 0.0833333333 m4 0 m4 0.833441841 0.833441841 m² Torsional Constant Effective Shear Area(Ay) Effective Shear Area(Az) 0.833441841 0.833441841 m² Torsional Stress Coeff. 0 m Shear Stress Coefficient(Gv) 1.5 1.5 1/m² 1.5 1/m² Shear Stress Coefficient(Gz) Truss property Stress... Stress... v Axis Variable Constant z Axis Variable Constant Spacing Spacing 1 m H-Section Section... Section... Solid Rectangle Beam property

Apply

Cancel

Apply

Soil property

► Ground property

Name	Interface (SOIL 1)	Interface (SOIL 2)	Interface (SOIL 3)	Interface (SOIL 4)	SOIL 1	SOIL 2	SOIL 3	SOIL 4
Туре	Other	Other	Other	Other	2D	2D	2D	2D
Model Type	Interface	Interface	Interface	Interface	Plane Strain	Plane Strain	Plane Strain	Plane Strain
Interface Type	Line	Line	Line	Line				
Material	SOIL 1	SOIL 2	SOIL 3	SOIL 4	SOIL 1	SOIL 2	SOIL 3	SOIL 4

► Structure property

Name	D-Wall	S1	S2
Туре	1D	1D	1D
Model Type	Beam	Truss	Truss
Material	CONCRETE	STEEL	STEEL
Section	Solid Rectangle	H-Section	H-Section
Section Size	1x1m @ 1m c/c	UB 610x229x101 @ 4m c/c	UB 610x229x101 @ 4m c/c

Mesh size control

Generate mesh

Create & Extract elements

'Extract elements' for retaining wall

Note: By using the 'Extract Elements' function, there is needed to open geometry and corresponding mesh set

Create interface element

(Wizard interface)

Adjusting the RW local axis

Merge node

Checking the merge node function for interface

Selecting all nodes → Mesh → Node → Merge → Find

Group mesh set

Model tree

Selecting 'Include/Exclude Elements & Nodes'

Rename the group mesh set to control the excavation layer

Boundary condition

Construction stage set

Stage 1. Initial

Stage 1. Input the initial condition

Stage 2. Install RW

Stage 2. Install the retaining wall

Stage 3. Excavation for layer 1

Stage 3. Excavation for layer 1

Stage 4. Excavation for layer 2

Stage 4. Excavation for layer 2

Stage 5. Excavation for layer 3

Stage 5. Excavation for layer 3

Analysis control

Result - Vertical displacement

Result → Advanced → Cutting Diagram

Result – Forces in RW

Shear force in RW (Beam stresses → S-XZ)

Bending moment in RW (Beam stresses → S-VON MISES)

Result – Comparison

(Displacement with & without RW)

→ There is a change in maximum displacement due to the installation of the retaining wall

Thank you!

GTS NX 3D Excavation with Retaining System

Lesson 02

Midas Taiwan

Reference: Midas GTX NX Tutorials

Project case overview

Project overview:

Rectangular Excavation: 10 x 20m

Depth: 12m

Soil Property Overview:

3m of Buried Layer7m of Colluvium12m of Weathering soil

Project case overview

Structural Elements Overview:

- 1. Retaining Wall All throughout the excavation faces
- 2. King Post 4 pcs laid along the centerline of the longitudinal distance
- 3. Prestressed Anchors 8 pcs per longitudinal face; 4 pcs per transverse face
- 4. Braces 4 sets starting from the first excavation layer
- 5. Struts 2 sets starting from the first excavation layer

Design Flow

Pre-processing

- 1. Geometry / Model setup
- 2. Material and Properties
- 3. Boundary Conditions
- 4. Mesh generation
 - Geotechnical elements
 - Structural Elements

Solving

- 1. Analysis Case
 - Linear
 - Non-linear
 - Construction Stage
 - Slope Stability
 - Etc.
- 2. Stage Sets
- 3. Analysis Control Settings
 - Dynamic settings
 - Thermal settings
 - Age settings
 - Non linearity
 - Etc.

Post Processing

- 1. Data Validation
- 2. Result Interpretation
- 3. Analysis Presentation
 - Graphs
 - Contour plots
 - Animations
- 4. Data Exports
 - Data Transfer
 - System Integration

Open model

Geometry drawing

Geometry modeling – Excavation area

Geometry modeling – Ground

Cutting ground surface

Bedding plane

Bedding plane for excavation area by 'Divide solid' function

Imprint for 'Plug pegs'

'Imprint' for creating node at different surface in excavation area

Check duplicate – Auto connect

Material

► Ground material

Name	Buried layer	Colluvium	Weathering soil
Material	Isotropic	Isotropic	Isotropic
Model Type	Hardening Soil	Hardening Soil	Hardening Soil
Poisson's Ratio	0.333	0.306	0.384
Unit Weight	16	16 17	
КО	0.5	0.441	0.74
Unit Weight (Saturated)	20	20	22
Initial Void Ratio	0.5	0.5	0.5
Drainage Parameters	Drained	Drained	Drained
Permeability	1	1	1
E50ref	22,000	43,000	150,000
Eoedref	22,000	43,000	150,000
Eurref	66,000	129,000	450,000
Failure Ratio	0.9	0.9	0.9
Reference Pressure	12	47	110
Power of Stress Level Dependency	0.5		0.5
Friction Angle	30	34	38
K0nc	0.5	0.441 0.384	
Dilatancy Angle	gle 0 4 5		5
Cohesion 5		10	15

► Structure material

Name	Structure material 1	Structure material 2	
Material	Isotropic	Isotropic	_
Model Type	Elastic	Elastic	
Elastic Modulus	210,000,000	200,000,000	
Poisson's Ratio	0.3	0.3	
Unit Weight	76.98	76.98	_

Property

► Ground material

Name	Interface (Buried layer)	Interface (Colluvium)	Interface (Weathering Soil)	Buried layer	Colluvium	Weathering Soil
Type	Other	Other	Other	3D	3D	3D
Model Type	Interface	Interface	Interface	-	-	-
Interface Type	Face	Face	Face	-	-	-
Material	Buried layer	Colluvium	Weathering Soil	Buried layer	Colluvium	Weathering Soil

► Structure material

Name	Sheet Pile	Walling, Plus peg, Strut	Anchor
Туре	2D	1D	1D
Model Type	Shell	Beam	Embedded Truss (linear elasticity)
Material	Structure material 1	Structure material 1	Structure material 2
Section	-	H-Section	Solid Round
Section Size	Uniform Thickness: 0.1	300x300x10/15	0.025

3D mesh – Excavation area

3D mesh - Ground

Change property – Ground

Extract elements for RW, Walling

1D mesh – Struts & Anchors

Plane interface

Selecting 'Interface'

Interface is created

0 kN/m²

General Seepage Thermal

Interface Nonlinearities Coulomb Friction

Structural Parameters
Normal Stiffness Modulus(Kn) 1222435.86 kN/m³
Shear Stiffness Modulus(Kt) 111130.533 kN/m³
Cohesion(C) 3.35 kN/m²
Frictional Angle(Φ) 21.1477004 [deg]

Tensile Strenath

Normal Stiffness in Tension Part

erface Material(Wizard) Color

Material

→ 'Interface' is created for each soil material by GTX Wizard

Interface Wizard

► Interface Wizard equation from Midas GTX NX manual:

$$K_n = E_{oed,i} / t_v$$

Here,
 $K_t = G_i / t_v$
 $E_{oed,i} = 2 \times G_i \times (1-v_i) / (1-2 \times v_i)$
 $G_i = R^2 \times G_{soil}$
 $C_i = R \times C_{soil}$
 $G_{soil} = E / (2(1+v_{soil}))$

Where,

K_n: Normal Stiffness Modulus

K_t: Shear Stiffness Modulus

t_v: Virtual Thickness Factor

R: Strength Reduction Factor

C_i: Interface Cohesion

Kn (Normal stiffness modulus) is the elasticity modulus for **bonding and un-bonding behavior** in the normal direction to the interface element

Kt (Shear stiffness modulus) is the elasticity modulus for **slip behavior** in the normal direction to the interface element

► Strength Reduction factor (R)

- Sandy soil/ Steel material: R= 0.6 ~ 0.7
- Clay/ Steel material: R= 0.5
- Sandy soil/ Concrete: R= 1.0 ~ 0.8
- Clay/ Concrete: R= 1.0 ~ 0.7

The general **Virtual Thickness Factor range is 0.01 ~ 0.1** (If the stiffness is high, use a smaller value)

Prestressed - Anchors

Selecting the length of anchors should add a prestressed load

Prestressed: 200 kN

Gravity – Boundary conditions

► Assigning gravity

► Assigning boundary condition

Rotation constraint

→ The deformation or rotation is constrained to prevent the degree of freedom errors

Stage 1. Initial conditions

Stage 2. Install sheet pile and plug pegs

Stage 3. Excavation layer 1 and Installation strut layer 1

Stage 4. Excavation layer 2 and Installation strut layer 2

Stage 1. Excavation layer 3 and Installation strut layer 3

Stage 6. Excavation layer 4 and Installation strut layer 4

Stage 7. Excavation layer 5

Results – RW system

▶ Deformed and undeformed in horizontal displacement

▶ Beam force, bending moment in walling & Truss force, axial force in anchors

Results - Displacement

Geometry modeling – Ground

- ▶ The comparison between interface force and total translation:
- (a) Interface force _ Tangent-Y displacement; (b) Total translation

Thank you!

